A resilient network recovery framework against cascading failures with deep graph learning

Author:

Zhou Jian1ORCID,Zheng Weijian2,Wang Dali3,Coit David W.4ORCID

Affiliation:

1. School of Economics and Management, Nanjing University of Science and Technology, Nanjing, China

2. Department of Computer and Information Science, Indiana University-Purdue University, Indianapolis, IN, USA

3. Energy and Environmental Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA

4. Department of Industrial and Systems Engineering, Rutgers University, Piscataway, NJ, USA

Abstract

Because of the increasing importance and dependencies of infrastructure networks and the potential for massive cascading failures in real-world network systems, maintenance optimization to effectively reduce system performance loss caused by diverse disruptions is of significant interest among researchers and practitioners. In this work, a new recovery framework was developed to rapidly identify important system components for maintenance to improve network resilience against cascading failures. This work provides distinct advantages to determine an optimal maintenance priority by combining real-time network structure importance with other maintenance prioritization based on customer preference. This approach adopts structural graph embedding and deep reinforcement learning to extract real-time network topology information (such as minimum vertex cover) to update the maintenance priority during the recovery process. Based on the case studies on synthetic networks and a US airport network, the proposed recovery framework with real-time network topology awareness shows better performance than other maintenance prioritization strategies regarding resilience enhancement. This work improves the understanding of how the changing network structure influences maintenance effects. It also provides insights of the practical usefulness of advanced deep learning on helping optimal maintenance prioritization to effectively reduce the intensity and extent of cascading failures.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3