Affiliation:
1. School of Aeronautics, Northwestern Polytechnical University, Xi’an, P.R. China
Abstract
The moment-independent importance measure technique for exploring how uncertainty allocates from output to inputs has been widely used to help engineers estimate the degree of confidence of decision results and assess risks. Solving the Borgonovo moment-independent importance measure in the presence of the multivariate output is still a challenging problem due to “curse of dimensionality,” and it is investigated in this contribution. For easily estimating the moment-independent importance measure, a novel method based on the vine copula is proposed. In the proposed method for estimating moment-independent importance measure, three steps are included. First, the moment-independent importance measure is expressed as a product of bivariate copula density functions through the vine copula trees. Second, the marginal probability density functions are obtained by the maximum entropy under the constraint of the fractional moments. Finally, the post-processed is executed to directly estimate the moment-independent importance measure by estimated copula density functions. The proposed method can handle multivariate output easily. The results of several examples indicate the validity and benefits of the proposed method.
Funder
Nation Natural science Foundation of China
Subject
Safety, Risk, Reliability and Quality
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献