Improving scheduled maintenance by missing data reconstruction: A double-loop Monte Carlo approach

Author:

Compare Michele12,Di Maio Francesco12,Zio Enrico123,Carlevaro Fausto4,Mattafirri Sara4

Affiliation:

1. Energy Department, Politecnico di Milano, Milano, Italy

2. Aramis Srl, Milano, Italy

3. Fondation EDF, Ecole Centrale Paris and Supelec, Chair on Systems Science and the Energetic Challenge, Paris, France

4. General Electric—Nuovo Pignone, Firenze, Italy

Abstract

This article describes a Monte Carlo–based approach for reconstructing missing information in a dataset used by General Electric for reliability analysis, which contains data coming from field observations at inspection of gas turbine components. The approach is based on a combination of maximum likelihood estimation technique to estimate the failure model parameters, Fisher information matrix to estimate the confidence intervals on the estimated parameters, and a double-loop Monte Carlo approach to estimate the missing equivalent starts (i.e. data of turbine state without the relative equivalent starts). The proposed methodology reduces the uncertainty in the estimation of the parameters of the turbine. The results of the application of the novel approach to a real industrial dataset are discussed along with a sensitivity analysis for the quantification of the robustness of the methodology to deal with different sizes of datasets.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3