A hierarchical decision-making framework for the assessment of the prediction capability of prognostic methods

Author:

Zeng Zhiguo1,Di Maio Francesco2,Zio Enrico12,Kang Rui3

Affiliation:

1. Chair System Science and the Energy Challenge, Fondation Electricité de France (EDF), CentraleSupélec, Université Paris Saclay, Chatenay-Malabry, France

2. Energy Department, Politecnico di Milano, Milano, Italy

3. School of Reliability and Systems Engineering, Beihang University, Beijing, China

Abstract

In prognostics and health management, the prediction capability of a prognostic method refers to its ability to provide trustable predictions of the remaining useful life, with the quality characteristics required by the related maintenance decision making. The prediction capability heavily influences the decision makers’ attitude toward taking the risk of using the predicted remaining useful life to inform the maintenance decisions. In this article, a four-layer, top-down, hierarchical decision-making framework is proposed to assess the prediction capability of prognostic methods. In the framework, prediction capability is broken down into two criteria (Layer 2), six sub-criteria (Layer 3) and 19 basic sub-criteria (Layer 4). Based on the hierarchical framework, a bottom-up, quantitative approach is developed for the assessment of the prediction capability, using the information and data collected at the Layer-4 basic sub-criteria level. Analytical hierarchical process is applied for the evaluation and aggregation of the sub-criteria and support vector machine is applied to develop a classification-based approach for prediction capability assessment. The framework and quantitative approach are applied on a simulated case study to assess the prediction capabilities of three prognostic methods of the literature: fuzzy similarity, feed-forward neural network and hidden semi-Markov model. The results show the feasibility of the practical application of the framework and its quantitative assessment approach, and that the assessed prediction capability can be used to support the selection of the suitable prognostic method for a given application.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3