Improved SSD-assisted algorithm for surface defect detection of electromagnetic luminescence

Author:

Xu Zhenying1,Wu Ziqian1ORCID,Fan Wei1ORCID

Affiliation:

1. School of Mechanical Engineering, Jiangsu University, Zhenjiang, China

Abstract

Defect detection of electromagnetic luminescence (EL) cells is the core step in the production and preparation of solar cell modules to ensure conversion efficiency and long service life of batteries. However, due to the lack of feature extraction capability for small feature defects, the traditional single shot multibox detector (SSD) algorithm performs not well in EL defect detection with high accuracy. Consequently, an improved SSD algorithm with modification in feature fusion in the framework of deep learning is proposed to improve the recognition rate of EL multi-class defects. A dataset containing images with four different types of defects through rotation, denoising, and binarization is established for the EL. The proposed algorithm can greatly improve the detection accuracy of the small-scale defect with the idea of feature pyramid networks. An experimental study on the detection of the EL defects shows the effectiveness of the proposed algorithm. Moreover, a comparison study shows the proposed method outperforms other traditional detection methods, such as the SIFT, Faster R-CNN, and YOLOv3, in detecting the EL defect.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3