Multiple stresses optimization design of constant-stress accelerated degradation test based on Wiener process

Author:

Nianhuan Li1,Dongwei Gu1ORCID,Zhiqiong Wang2,Juncheng Wang1,Shuailin Li1,Bingkun Chen2,Pengfei Chen1

Affiliation:

1. School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China

2. School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin, China

Abstract

Constant-stress accelerated degradation test (CSADT) is an effective means of evaluating the reliability of products, to ensure accurate assessment of reliability-related indicators under limited funds. The optimized design of CSADT has been widely applied. The advantage of Wiener process in capturing the random nature of non-monotonic degradation paths caused by inherent uncertainties in products has also been widely used in the application of accelerated degradation tests (ADT). To address the drawback of traditional Wiener process with constant diffusion coefficients leading to low accuracy in test evaluation, a multi-stress coupled constant acceleration degradation model with stress-related diffusion coefficients is proposed. This includes the construction of a D-optimization criterion that minimizes the variance of model parameter estimation as the optimization target, and a scheme optimization method based on Particle Swarm Optimization (PSO) with cost constraints. Through the analysis of a case study of ADT for LED lamps, comparison and parameter sensitivity analysis of four accelerated degradation models with or without considering stress-related diffusion coefficients, the effectiveness, and robustness of the model in the paper are validated.

Funder

Jilin Provincial Scientific and Technological Development Program

Education Department of Jilin Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3