Path reachability including distance-constrained detours

Author:

Sasabe Masahiro1ORCID,Otani Miyu1,Hara Takanori1,Kasahara Shoji1

Affiliation:

1. Nara Institute of Science and Technology, Ikoma, Nara, Japan

Abstract

When nodes and/or links are down in a network, the network may not function normally. Most of the existing work focuses on the reachability between two nodes along a path, that is, path reliability, and that through arbitrary paths, that is, network reliability. However, in case of wireless multi-hop networks and road networks, it may be inefficient or difficult to recalculate a path from the source to the destination when a failure occurs at an intermediate link in the path. In such cases, we can expect that the reachability between two nodes will improve by taking a detour from the entry of the failure link (i.e. failure point) to the destination without traversing the failure link. Since the detour may also increase the communication/travel delay, in this paper, we propose a new path metric (i.e. path reachability including distance-constrained detours), which consists of the conventional path reachability and the reachability along distance-constrained detours under arbitrary link failures in the original path. We first prove the two important characteristics: (1) the proposed metric is exactly the same as the network reliability in case of no distance constraint and (2) it is upper bounded by the diameter constrained network reliability. Through numerical results using a grid network and more realistic networks (i.e. wireless networks and a road network), we show the fundamental characteristics of the proposed metric and analyze the goodness of several representative paths in terms of the proposed metric as well as the conventional metrics (i.e. path length and path reachability).

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3