Bayesian inference for a novel hierarchical accelerated degradation model considering the mechanism variation

Author:

Wang Hongyu1,Ma Xiaobing12ORCID,Zhao Yu12

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, Beijing, China

2. The Key Laboratory on Reliability and Environmental Engineering Technology, Beihang University, Beijing, China

Abstract

For highly reliable products, accelerated thermal degradation tests are efficient to provide feedback on reliability information. In accelerated thermal degradation tests, the degradation data collected at the elevated temperatures are used to extrapolate the performance of products at the normal temperature. An important tool in such extrapolation is the Arrhenius model, in which the activation energy is generally assumed to be constant. However, in some practical accelerated thermal degradation tests of polymeric materials, a variation of the underlying degradation mechanism is induced when the temperature rises to a certain high level, resulting in a change in the activation energy. Motivated by this phenomenon, we propose a two-stage Arrhenius model. The two stages correspond to the lower and higher temperature ranges with different activation energies. Then, this new model is incorporated to the degradation model, yielding a novel hierarchical model for the accelerated thermal degradation test data from polymeric materials involving a mechanism variation. Furthermore, the Bayesian method is adopted for parameter inference, and the lifetime distribution is obtained subsequently. A practical example of polysiloxane rubbers demonstrates the effectiveness of the proposed model.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3