Operational safety hazard identification methodology for automated driving systems fleets

Author:

Correa-Jullian Camila1ORCID,Ramos Marilia2ORCID,Mosleh Ali2ORCID,Ma Jiaqi3ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA

2. B. John Garrick Institute for the Risk Sciences, University of California, Los Angeles, CA, USA

3. Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA

Abstract

The safety of Automated Driving Systems (ADS) operating as Mobility as a Service (MaaS) depends on multiple factors in addition to the vehicle’s functionality, reliability, and performance. Currently, no comprehensive approach has been formally developed to identify operational safety hazards and define the operational safety responsibilities of the key agents involved in Level 4 (L4) ADS MaaS operations. This work develops and applies a structured hazard identification methodology for this operation. The methodology leverages and complements the strengths of various hazard identification and modeling methods, including Event Sequence Diagram (ESD), Concurrent Task Analysis (CoTA), System-Theoretic Process Analysis (STPA), and Fault Tree Analysis (FTA). The methodology is applied to analyze the operation of a fleet of L4 ADS vehicle fleets without a safety driver, monitored and supervised by remote operators. The results highlight the fleet operator’s role in ensuring the correct vehicle operation and preventing and mitigating incidents. The analysis demonstrates the developed methodology’s strengths and suitability for operational safety analysis of complex systems’ operations, considering the inherent complexity of the interactions between multiple human and machine agents.

Funder

National Highway Traffic Safety Administration

Publisher

SAGE Publications

Reference96 articles.

1. Operational benefits and challenges of shared-ride automated mobility-on-demand services

2. An insight into crash avoidance and overtaking advice systems for Autonomous Vehicles: A review, challenges and solutions

3. SAE International. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. SAE Standard J3016_202104.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3