Early pitting fault detection for polymer gears using kurtosis-VMD based condition indicators

Author:

Kumar Anupam1ORCID,Parey Anand1ORCID,Kankar Pavan Kumar1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India

Abstract

The vibration signals of a polymer gear are considerably weak and susceptible to ambient noise at the early stage of the fault, which makes the fault difficult to detect. Efficient detection of an early fault in a polymer gear may improve the operation safety of the machinery system that utilizes it for power transmission. This study introduces an innovative approach for the early detection of pitting faults in polymer gears, utilizing condition indicators (CIs) derived from kurtosis-variational mode decomposition (VMD). First, the vibration signal of the polymer gear is decomposed using VMD into several components. Second, the sensitive components are selected to construct a new signal from the first two largest kurtosis values. Third, the CIs are extracted from newly constructed signals, and envelope spectrum analysis is performed. It is observed from the results that the kurtosis-VMD based CIs are effective in the early pitting fault detection of polymer gears. Finally, it is found that the proposed method performs better in all operating conditions considered in the experiment, compared with raw signal and kurtosis-empirical mode decomposition (EMD) based analysis. The proposed method’s response to noise is also explored. Furthermore, the proposed method is compared with the existing time synchronous averaging (TSA), difference, and residual methods.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3