Clinical algorithms, racism, and “fairness” in healthcare: A case of bounded justice

Author:

El-Azab Sarah1ORCID,Nong Paige2ORCID

Affiliation:

1. Department of Health Management and Policy, University of Michigan, Ann Arbor, MI, USA

2. Division of Health Policy and Management, University of Minnesota, Minneapolis, MN, USA

Abstract

To date, attempts to address racially discriminatory clinical algorithms have largely focused on fairness and the development of models that “do no harm.” While the push for fairness is rooted in a desire to avoid or ameliorate health disparities, it generally neglects the role of racism in shaping health outcomes and does little to repair harm to patients. These limitations necessitate reconceptualizing how clinical algorithms should be designed and employed in pursuit of racial justice and health equity. A useful lens for this work is bounded justice, a concept and research analytic proposed by Melissa Creary to guide multidisciplinary health equity interventions. We describe how bounded justice offers a lens for (1) articulating the deep injustices embedded in the datasets, methodologies, and sociotechnical infrastructure underlying design and implementation of clinical algorithms and (2) envisioning how these algorithms can be redesigned to contribute to larger efforts that not only address current inequities, but to redress the historical mistreatment of communities of color by biomedical institutions. Thus, the aim of this article is two-fold. First, we apply the bounded justice analytic to fairness and clinical algorithms by describing structural constraints on health equity efforts such as medical device regulatory frameworks, race-based medicine, and racism in data. We then reimagine how clinical algorithms could function as a reparative technology to support justice and empower patients in the healthcare system.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems and Management,Computer Science Applications,Communication,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3