Affiliation:
1. University of Exeter, UK
Abstract
Is Big Data science a whole new way of doing research? And what difference does data quantity make to knowledge production strategies and their outputs? I argue that the novelty of Big Data science does not lie in the sheer quantity of data involved, but rather in (1) the prominence and status acquired by data as commodity and recognised output, both within and outside of the scientific community and (2) the methods, infrastructures, technologies, skills and knowledge developed to handle data. These developments generate the impression that data-intensive research is a new mode of doing science, with its own epistemology and norms. To assess this claim, one needs to consider the ways in which data are actually disseminated and used to generate knowledge. Accordingly, this article reviews the development of sophisticated ways to disseminate, integrate and re-use data acquired on model organisms over the last three decades of work in experimental biology. I focus on online databases as prominent infrastructures set up to organise and interpret such data and examine the wealth and diversity of expertise, resources and conceptual scaffolding that such databases draw upon. This illuminates some of the conditions under which Big Data needs to be curated to support processes of discovery across biological subfields, which in turn highlights the difficulties caused by the lack of adequate curation for the vast majority of data in the life sciences. In closing, I reflect on the difference that data quantity is making to contemporary biology, the methodological and epistemic challenges of identifying and analysing data given these developments, and the opportunities and worries associated with Big Data discourse and methods.
Subject
Library and Information Sciences,Information Systems and Management,Computer Science Applications,Communication,Information Systems
Cited by
187 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献