Municipal surveillance regulation and algorithmic accountability

Author:

Young Meg1ORCID,Katell Michael1ORCID,Krafft P. M.2

Affiliation:

1. Information School, University of Washington, Seattle, WA, USA

2. Oxford Internet Institute, University of Oxford, Oxford, UK

Abstract

A wave of recent scholarship has warned about the potential for discriminatory harms of algorithmic systems, spurring an interest in algorithmic accountability and regulation. Meanwhile, parallel concerns about surveillance practices have already led to multiple successful regulatory efforts of surveillance technologies—many of which have algorithmic components. Here, we examine municipal surveillance regulation as offering lessons for algorithmic oversight. Taking the 2017 Seattle Surveillance Ordinance as our primary case study and surveying efforts across five other cities, we describe the features of existing surveillance regulation; including procedures for describing surveillance technologies in detail, requirements for public engagement, and processes for establishing acceptable uses. Although the Seattle Surveillance Ordinance was not intended to address algorithmic accountability, we find these considerations to be relevant to the law’s aim of surfacing disparate impacts of systems in use. We also find that in notable cases government employees did not identify regulated algorithmic surveillance technologies as reliant on algorithmic or machine learning systems, highlighting definitional gaps that could hinder future efforts toward algorithmic regulation. We argue that (i) finer-grained distinctions between types of information systems in the language of law and policy, and (ii) risk assessment tools integrated into their implementation would strengthen future regulatory efforts by rendering underlying algorithmic components more legible and accountable to political and community stakeholders.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems and Management,Computer Science Applications,Communication,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3