Playing with machines: Using machine learning to understand automated copyright enforcement at scale

Author:

Gray Joanne E1,Suzor Nicolas P2ORCID

Affiliation:

1. Creative Industries Faculty, Queensland University of Technology, Brisbane, Australia

2. Faculty of Law, Queensland University of Technology, Brisbane, Australia

Abstract

This article presents the results of methodological experimentation that utilises machine learning to investigate automated copyright enforcement on YouTube. Using a dataset of 76.7 million YouTube videos, we explore how digital and computational methods can be leveraged to better understand content moderation and copyright enforcement at a large scale.We used the BERT language model to train a machine learning classifier to identify videos in categories that reflect ongoing controversies in copyright takedowns. We use this to explore, in a granular way, how copyright is enforced on YouTube, using both statistical methods and qualitative analysis of our categorised dataset. We provide a large-scale systematic analysis of removals rates from Content ID’s automated detection system and the largely automated, text search based, Digital Millennium Copyright Act notice and takedown system. These are complex systems that are often difficult to analyse, and YouTube only makes available data at high levels of abstraction. Our analysis provides a comparison of different types of automation in content moderation, and we show how these different systems play out across different categories of content. We hope that this work provides a methodological base for continued experimentation with the use of digital and computational methods to enable large-scale analysis of the operation of automated systems.

Funder

Australian Research Council

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems and Management,Computer Science Applications,Communication,Information Systems

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3