The data archive as factory: Alienation and resistance of data processors

Author:

Plantin Jean-Christophe1ORCID

Affiliation:

1. Department of Media and Communications, London School of Economics and Political Science, London, UK

Abstract

Archival data processing consists of cleaning and formatting data between the moment a dataset is deposited and its publication on the archive’s website. In this article, I approach data processing by combining scholarship on invisible labor in knowledge infrastructures with a Marxian framework and show the relevance of considering data processing as factory labor. Using this perspective to analyze ethnographic data collected during a six-month participatory observation at a U.S. data archive, I generate a taxonomy of the forms of alienation that data processing generates, but also the types of resistance that processors develop, across four categories: routine, speed, skill, and meaning. This synthetic approach demonstrates, first, that data processing reproduces typical forms of factory worker’s alienation: processors are asked to work along a strict standardized pipeline, at a fast pace, without acquiring substantive skills or having a meaningful involvement in their work. It reveals, second, how data processors resist the alienating nature of this workflow by developing multiple tactics along the same four categories. Seen through this dual lens, data processors are therefore not only invisible workers, but also factory workers who follow and subvert a workflow organized as an assembly line. I conclude by proposing a four-step framework to better value the social contribution of data workers beyond the archive.

Funder

University of Michigan, MCubed program

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems and Management,Computer Science Applications,Communication,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3