Affiliation:
1. School of Social and Political Sciences, University of Melbourne, Melbourne, Victoria, Australia
2. School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
3. The Policy Institute, King’s College London, London, UK
Abstract
Research in the global field of artificial intelligence is increasingly hybrid in orientation. Researchers are beholden to the requirements of multiple intersecting spheres, such as scholarly, public, and commercial, each with their own language and logic. Relatedly, collaboration across disciplinary, sector and national borders is increasingly expected, or required. Using a dataset of 93,482 artificial intelligence publications, this article operationalises scholarly, public, and commercial spheres through citations, news mentions, and patent mentions, respectively. High performing publications (99th percentile) for each metric were separated into eight categories of influence. These comprised four blended categories of influence (news, patents and citations; news and patents; news and citations; patents and citations) and three single categories of influence (citations; news; patents), in addition to the ‘Other’ category of non-high performing publications. The article develops and applies two components of a new hybridity lens: evaluative hybridity and generative hybridity. Using multinomial logistic regression, selected aspects of knowledge production – research context, focus, artefacts, and collaborative configurations – were examined. The results elucidate key characteristics of knowledge production in the artificial intelligence field and demonstrate the utility of the proposed lens.
Funder
Economic and Social Research Council
Subject
Library and Information Sciences,Information Systems and Management,Computer Science Applications,Communication,Information Systems
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献