Small decisions with big impact on data analytics

Author:

Diesner Jana1

Affiliation:

1. UIUC, USA

Abstract

Big social data have enabled new opportunities for evaluating the applicability of social science theories that were formulated decades ago and were often based on small- to medium-sized samples. Big Data coupled with powerful computing has the potential to replace the statistical practice of sampling and estimating effects by measuring phenomena based on full populations. Preparing these data for analysis and conducting analytics involves a plethora of decisions, some of which are already embedded in previously collected data and built tools. These decisions refer to the recording, indexing and representation of data and the settings for analysis methods. While these choices can have tremendous impact on research outcomes, they are not often obvious, not considered or not being made explicit. Consequently, our awareness and understanding of the impact of these decisions on analysis results and derived implications are highly underdeveloped. This might be attributable to occasional high levels of over-confidence in computational solutions as well as the possible yet questionable assumption that Big Data can wash out minor data quality issues, among other reasons. This article provides examples for how to address this issue. It argues that checking, ensuring and validating the quality of big social data and related auxiliary material is a key ingredient for empowering users to gain reliable insights from their work. Scrutinizing data for accuracy issues, systematically fixing them and diligently documenting these processes can have another positive side effect: Closely interacting with the data, thereby forcing ourselves to understand their idiosyncrasies and patterns, can help us to move from being able to precisely model and formally describe effects in society to also understand and explain them.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems and Management,Computer Science Applications,Communication,Information Systems

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3