The virtue of simplicity: On machine learning models in algorithmic trading

Author:

Hansen Kristian Bondo1ORCID

Affiliation:

1. Department of Management Politics and Philosophy, Copenhagen Business School, Frederiksberg, Denmark

Abstract

Machine learning models are becoming increasingly prevalent in algorithmic trading and investment management. The spread of machine learning in finance challenges existing practices of modelling and model use and creates a demand for practical solutions for how to manage the complexity pertaining to these techniques. Drawing on interviews with quants applying machine learning techniques to financial problems, the article examines how these people manage model complexity in the process of devising machine learning-powered trading algorithms. The analysis shows that machine learning quants use Ockham’s razor – things should not be multiplied without necessity – as a heuristic tool to prevent excess model complexity and secure a certain level of human control and interpretability in the modelling process. I argue that understanding the way quants handle the complexity of learning models is a key to grasping the transformation of the human’s role in contemporary data and model-driven finance. The study contributes to social studies of finance research on the human–model interplay by exploring it in the context of machine learning model use.

Funder

H2020 European Research Council

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems and Management,Computer Science Applications,Communication,Information Systems

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3