Learning accountable governance: Challenges and perspectives for data-intensive health research networks

Author:

Muller Sam HA1ORCID,Mostert Menno1,van Delden Johannes JM1,Schillemans Thomas2,van Thiel Ghislaine JMW1

Affiliation:

1. Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands

2. Utrecht School of Governance, Utrecht University, Utrecht, The Netherlands

Abstract

Current challenges to sustaining public support for health data research have directed attention to the governance of data-intensive health research networks. Accountability is hailed as an important element of trustworthy governance frameworks for data-intensive health research networks. Yet the extent to which adequate accountability regimes in data-intensive health research networks are currently realized is questionable. Current governance of data-intensive health research networks is dominated by the limitations of a drawing board approach. As a way forward, we propose a stronger focus on accountability as learning to achieve accountable governance. As an important step in that direction, we provide two pathways: (1) developing an integrated structure for decision-making and (2) establishing a dialogue in ongoing deliberative processes. Suitable places for learning accountability to thrive are dedicated governing bodies as well as specialized committees, panels or boards which bear and guide the development of governance in data-intensive health research networks. A continuous accountability process which comprises learning and interaction accommodates the diversity of expectations, responsibilities and tasks in data-intensive health research networks to achieve responsible and effective governance.

Funder

Innovative Medicines Initiative

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems and Management,Computer Science Applications,Communication,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ethical Guidance and Epidemiological Studies;Handbook of Epidemiology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3