Predicting Financial Manipulation Using an Ensemble-based Approach

Author:

Barbhuiya Abdul Aziz1ORCID,Das Ashim Kumar1,Dey Sudip2

Affiliation:

1. Department of Management Studies, National Institute of Technology, Silchar, Assam, India

2. Department of Mechanical Engineering, National Institute of Technology, Silchar, Assam, India

Abstract

Financial manipulation becomes a critical issue in corporate transparency due to the increased dependency on stakeholders’ decision-making. The present study proposed a machine learning (ML) driven framework to predict financial manipulation with tertiary classification. The aim is to assess the effectiveness of the Ensemble Bagged Trees (EBT) model in predicting financial manipulation with a greater qualitative hierarchy of financial statements. The supervised ML classification technique is trained and tested using secondary data. The EBT model has provided valuable insight and effectively predicted financial manipulation. The study further enhanced the model using feature selection based on chi-square value and achieved dimensionality reduction using parallel coordination plot analysis. The use of the model may help stakeholders make proper decisions based on public financial information.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3