Affiliation:
1. Department of Psychology, University of Connecticut Storrs, Connecticut,
Abstract
A cubic millimeter of primary visual cortex contains about 100,000 neurons that are heavily interconnected by intrinsic and extrinsic afferents. The effort of many neuroanatomists over the past has revealed the general outline of these connections; however, their function remains a mystery. Recently, combined physiological and anatomical approaches are beginning to reveal the role of these connections in the generation of cortical receptive fields. A common theme emerges from all these studies: cortical connections are remarkably specific and this specificity is determined in great extent by the type of connection and the neuronal response properties. Feedforward connections follow relatively rigid rules of wiring selectively targeting neurons with receptive fields matched in position and contrast polarity (thalamus—cortical layer 4) or position and orientation selectivity (layer 4—layers 2 + 3). In contrast, horizontal connections follow more flexible rules connecting distant cells that are not retinotopically aligned and neighboring cells with different orientation preferences. These differences in connectivity may give a hint on how visual stimuli are processed in the primary visual cortex. An attractive hypothesis is that local stimuli use the highly selective feedforward inputs to reliably drive cortical neurons while background stimuli modulate their activity through more flexible horizontal (and feedback) connections.
Subject
Neurology (clinical),General Neuroscience
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献