In silico Rationalization for Leads from Oldenlandia umbellata L. to Inhibit Multiple Molecular Targets Regulating Osteoporosis

Author:

Paramasivam Sivasakthi1,Perumal Senthamil Selvan1ORCID

Affiliation:

1. Department of Pharmaceutical Technology, University College of Engineering, Anna University (BIT Campus), Tiruchirappalli, Tamil Nadu, India

Abstract

Background Osteoporosis is a chronic metabolic bone disease caused due to the dysregulation in the functioning of osteoblast and osteoclast cells leading to increased bone resorption predominantly in postmenopausal women and the elderly, thereby affecting a significant global population. Purpose The present study aims to computationally screen the phytochemical constituents of Oldenlandia umbellata Linn against the unique molecular therapeutic targets of osteoporosis and validate the results using Molecular Dynamics (MD) Simulation. Materials and Methods The molecular docking analysis of the selected phytoconstituents against the molecular targets were performed using AutoDock 4.2.6 – AutoDock Tools 1.5.6. In addition, the drug likeliness, ADME, bioactivity, and toxicity were predicted using Molinspiration ADMELAB2.0, ProTox-II and Orisis DataWarrior online tools. Molecular Dynamic Simulation studies were performed using WebGRO macromolecular simulation server. Results Molecular docking results and data analysis revealed that deacetylasperuloside possesses good drug-likeness, ADME properties, and bioactive scores and did not indicate any toxicity compared to other phytochemicals exhibiting binding energies below –8.00 Kcal/mol against the targets. Together, the study emphasized that deacetylasperuloside could bind with the molecular targets of osteoporosis, and the lead is a potential therapeutic candidate for osteoporosis treatment. Further, molecular dynamic simulation analysis for 100 ns revealed that the ligand–protein complexes, including glycogen synthase kinase 3β (GSK3β)-deacetylasperuloside and cathepsin K (CTSK)-deacetylasperuloside complexes, were stable and highly compact assessed from their trajectories. Hence, it can be emphasized that deacetylasperuloside could be a potential therapeutic molecule that could inhibit the targets, including GSK3β and CTSK. Conclusion Oldenlandia umbellata L. is a potential candidate for identifying therapeutic leads for osteoporosis treatment. Further, in vitro and in vivo studies are needed as an output of this research to evaluate its therapeutic efficacy.

Publisher

SAGE Publications

Subject

Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3