Nerolidol Alleviates Oxidative Stress and Inflammation in Diabetic Retinopathy 
Mediated by High Glucose Through 
Ameliorating Nrf2/HO-1 Pathway

Author:

Li Changhong1,Shi Buchao2,Li Dong3,Li Hui2ORCID

Affiliation:

1. Department of General Medical, The People’s Hospital of Hengshui (Harrison International Peace Hospital), Hengshui, Hebei Province, China

2. Department of Neurology, The No. 5 People’s Hospital of Hengshui, Hebei Province, China

3. Department of Ultrasound, The No. 5 People’s Hospital of Hengshui, Hebei Province, China

Abstract

Background Diabetic retinopathy (DR) is the foremost microvascular problem that causes drastic visual impairment in diabetes patients. Hyperglycemia-triggered reaction cascade of inflammation and oxidative stress constitute the DR pathogenesis. The existing treatment options are not completely satisfactory. Materials and Methods We investigated the cell viability by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, inflammatory mediators, lactate dehydrogenase (LDH), superoxide dismutase, glutathione, and malonaldehyde (MDA) levels by ELISA and qRT-PCR assay, protein expression of Nrf2 and heme oxygenase-1 (HO-1) by western blotting assay were analyzed. Results According to our research, nerolidol (NRD) increases the proliferation and antioxidant activity of human retinal endothelial cells (HRECs) by inducing Nrf2/HO-1 signaling, while attenuating MDA, an oxidative stress marker, LDH, and inflammatory mediators. These outcomes suggest that a substantial reaction of inflammation and oxidative stress injury happened in DR, which might be correlated to the instigation of the signaling Nrf2/HO-1. Conclusion NRD effectively suppresses oxidative stress and inflammation in HG-induced HRECs. The primary mechanism of NRD on DR may be linked to the activation of the Nrf2/HO-1 pathway and may give a useful medicine for DR treatment.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3