Tibetan-Origin Edible Chinese Herbal 
Prescription C18 Protects H9C2 
Cardiomyocytes from Cobalt Chloride-induced Hypoxia Injury Through the PI3K/AKT Signaling Pathway

Author:

Chang Guoxin12,Xie Hongyi12,Chen Shu3,Wang Ruixue2,Zeng Xuxin2,Lin Dingmei12,Mo Zixuan12,Yu Jingjing2,Liu Xindan2,Zheng Zhaoguang124ORCID,Wang Yan1

Affiliation:

1. Department of Traditional Chinese Medicine and Pharmacy, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China

2. Department of Pharmacy, School of Medicine, Foshan University, Foshan, Guangdong, PR China

3. Department of Drug Research, Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, PR China

4. Department of Drug Research, Foshan Newtopcome Pharmaceutical Technology Co., Ltd., Foshan, Guangdong, PR China

Abstract

Background Altitude sickness is often prone to occur during tourism or work in high-altitude areas. In China, traditional Tibetan medicines have a long history of preventing or treating altitude sickness, especially altitude hypoxia, which may lead to myocardial cell apoptosis and myocardial hypoxia-reoxygenation injury. Purpose This study investigated the effect of a Tibetan-origin edible Chinese herbal prescription (named C18) on protecting H9C2 cardiomyocytes from cobalt chloride-induced hypoxia injury and its potential mechanism. Methods In this study, a hypoxic injury model of H9C2 cardiomyocytes induced by cobalt chloride was established first. Then the cell viability, relevant antioxidant indicators malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and protein expression (hypoxia-inducible factor 1 alpha (HIF-1α), phosphoinositide 3-kinase (PI3K), phosphorylated protein kinase B (p-AKT)) were measured after pretreatment with or without C18. At last, the specific PI3K/AKT inhibitor LY294002 was applied to verify the antihypoxia signaling pathway. Results C18 could significantly promote normal H9C2 cardiomyocyte proliferation and inhibit apoptosis of hypoxic H9C2 cardiomyocytes, reduce the release of lactate dehydrogenase and MDA, and increase the levels of SOD and GSH-Px antioxidant enzymes. In addition, C18 could significantly downregulate the expression of HIF-1α protein and upregulate the expression of intracellular p-AKT. Moreover, these effects of C18 can be blocked by the specific PI3K/AKT inhibitor LY294002. Conclusion C18 protects H9C2 cardiomyocytes from cobalt chloride-induced hypoxia injury through the PI3K/AKT signaling pathway.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3