Synthesis and Characterization of Citrus limonum Copper Nanoparticles and its in vitro Evaluation of Cytotoxicity against JURKAT Cells

Author:

Makki Huda Jameel1ORCID,Chandrasekharaiah KS1

Affiliation:

1. Department of Biochemistry, Jnana Kaveri Campus, Mangalore University, Mangalagangotri, Karnataka, India

Abstract

Background Biosynthesized copper nanoparticles (CuNPs) are eco-friendly, cost-effective, and biocompatible agents reported for extensive biomedical and bioengineering applications. Different chemical synthesis approaches have been established recently, with challenges of higher toxicity and high cost involved in the synthesis process. Green synthesized nanoparticles emerged and was extensively reported to address the challenges faced by traditional chemical synthesis processes. However, the high toxicity remains a significant challenge for translating the green synthesized nanoparticles into clinically valuable products. Purpose To synthesize, characterize, and evaluate the citrus extract-based CuNps cytotoxicity against JURKAT cell lines. Materials and Methods An aqueous extract of the citrus fruit was used as a reducing agent, and the CuNps were synthesized. Fourier Transform Infra-Red (FTIR), scanning electron microscopy (SEM), dynamic light scattering (DLS), Ultraviolet-visible (UV-vis) spectrophotometry, and X-ray diffraction (XRD) were used to confirm the synthesis of CuNp and its structure. Furthermore, the effect of CuNPs on cell viability and toxicity was evaluated by mitochondrial toxicity tests (MTT) and LDH assays against the JURKAT cell lines. Results and Conclusion The synthesized nanoparticle’s size ranged from 40 to 70 nm, as confirmed through nanoparticle tracking analysis (NTA) and SEM. The synthesized nanoparticles were confirmed to be anti-proliferative with a high percent of cytotoxicity as found from MTT and LDH leakage assays. The size and shape of the synthesized CuNPs as studied by SEM were found to be 30–70 nm and more or less spherical. MTT reported 64.87% inhibition at 320 µg/mL with an IC50 value of 80.78 µg/mL ( p < 0.05). Cytotoxicity as measured by the LDH assay was found to be 53.12 ± 0.89% at 320 µg/mL with an IC50 of 23.12 ± 0.39 when compared to the positive control (11.21 ± 0.15 µg/mL). Green-synthesized CuNPs exhibited potential anti-cancerous activity in JURKAT cell lines, as evidenced by the LDH and MTT assays.

Publisher

SAGE Publications

Subject

Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3