In Vivo Peritoneal Surface Area Measurement in Rats by Micro-Computed Tomography (μCT)

Author:

Breton Elodie1,Choquet Philippe1,Bergua Laure2,Barthelmebs Mariette3,Haraldsson Börje4,Helwig Jean-Jacques3,Constantinesco André1,Fischbach Michel2

Affiliation:

1. Department of Biophysics and Nuclear Medicineand University Hospital, Strasbourg, France

2. Nephrology Dialysis Transplantation Children's Unit, and University Hospital, Strasbourg, France

3. INSERM Unit 727, University Louis Pasteur Medical School, Strasbourg, France

4. Department of Nephrology and Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden

Abstract

Peritoneal dialysis (PD) uses the dynamic dialysis properties of the peritoneal membrane. The fraction of the anatomic peritoneal surface area (PSA) recruited is of importance for maximizing exchanges and is potentially impacted by parameters such as fill volume.We describe an in vivo assessment of the contact surface area by micro-computed tomography (μCT) using an iodinated contrast medium added to the PD fluid, a contrast agent presumed without surfactant property. In the isotropic volume (reconstructed voxel size 186 μm x 186 μm x 186 μm), the iodinated PD fluid is automatically selected, thanks to its contrast difference with soft tissues, and its surface area is computed. The method was first tested on phantoms showing the ability to select the PD fluid volume and to measure its surface area. In vivo experiments in rat consisted of μCT acquisition of rat abdomen directly after intraperitoneal administration (10 mL/100 g rat body weight) of a dialysis fluid containing 10% by volume iodinated contrast agent. Fluorescein isothiocyanate albumin was used as dilution marker.We found a strong linear relationship ( R2= 0.98) between recruited PSA (cm2) and rat weight (g) in the range of 235 to 435 g: recruited PSA = (1.61 weight + 40.5) cm2. Applying μCT with a fill volume of 10 mL/100 g rat body weight, the in vivo measured PSA was in the order of magnitude of the ex vivo anatomic PSA as determined by Kuzlan's formula, considered in most instances as the maximal surface area that can be recruited by PD fluid.This new methodology was the first to give an in vivo high-resolution isotropic three-dimensional (3-D) determination of the PSA in contact with dialysate. Its sensitivity allows us to take into account the recruitment of fine 3-D structures of the PSA membrane that were not accessible to previous 2-D-based imaging methodologies. Its in vivo application also integrates the physiological natural tensile stress of tissues.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3