Are transient changes in capillary surface area required to explain peritoneal transport in renal failure patients?

Author:

Wolf Matthew B1ORCID

Affiliation:

1. Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, USA

Abstract

Background: Waniewski postulated a transient increase in peritoneal capillary surface area to fit their model predictions to experimental data of Heimburger measured in renal failure (RF) patients undergoing peritoneal dialysis (PD) but with only a 3.86% glucose dialysis fluid. The present aim is to propose a new mathematical model of the patient PD procedure that could closely fit the complete Heimburger measurement set without this postulate. Methods: The three-pore model of Rippe was used to describe transient changes in peritoneal volume and solute concentrations during a PD dwell. The predialysis, RF patient, plasma solute concentrations were assumed to remain constant during the dwell. The model was validated using the 3.86% glucose Heimburger measurements. Permeability surface area product parameters were chosen to match only the end-dwell peritoneal fluid glucose concentration and the end-dwell amounts of urea, creatinine, and Na+ removed from this simulated patient group. Then, this model was used to predict additional measurements by Heimburger on two other patient groups dialyzed with glucose concentrations of 2.27% and 1.36%, respectively. Parameters were unchanged when simulating these other patient groups. Results: To match the shape of the transient changes in drained volume and dialysis fluid glucose concentration for the 3.86% glucose group, it was necessary for only one parameter, the effective radius of glucose, to vary linearly in proportion to the dialysis fluid glucose concentration. This description was unchanged in the other two groups. Conclusion: Postulated transient increases in peritoneal capillary surface area were unnecessary to predict the entire Heimburger measurements.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peritoneal physicochemical transport mechanisms: Hypotheses, models and controversies;Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis;2021-03-30

2. On the change of transport parameters with dwell time during peritoneal dialysis;Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis;2020-11-15

3. Mechanisms of Peritoneal Acid-Base Kinetics During Peritoneal Dialysis;ASAIO Journal;2020-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3