Changes in Volume of Peritoneal Mesothelial Cells Exposed to Osmotic Stress

Author:

Breborowicz Andrzej1,Polubinska Alicja1,Oreopoulos Dimitrios G.2

Affiliation:

1. Department of Pathophysiology, Poznan Medical School, Poland

2. Division of Nephrology, University of Toronto, Canada

Abstract

Objective To evaluate changes in volume of mesothelial cells exposed to hypertonic medium and the role of volume regulatory mechanisms in adaptation to hyperosmolality. Design Experiments were performed on primary cultures of human peritoneal mesothelial cells. Cell volume was estimated by measuring equilibrated (intracellular/ extracellular space) 14C-urea in cellular water. Cells in monolayers were exposed to hyperosmotic media and changes in cellular water or intracellular uptake of 3H-proline were measured. Results Exposure of mesothelial cell monolayers to hyperosmotic media reduced the cell volume; the effect was proportional to the osmolality of the medium. Volume of cells exposed to medium supplemented with glucose (180 mmol/L) decreased by 26%, p < 0.001, after 30 minutes’ incubation. Prolonged exposure of mesothelial cells to hyperosmotic medium resulted in gradual recovery, after initial decline, of their volume. Intracellular uptake of amino acid 3H-proline increased after 240 minutes’ exposure of the mesothelial cells to medium supplemented with glucose (90 mmol/L) (+40%, p < 0.05). When cells cultured for 7 days in medium supplemented with glucose (45 mmol/L) were exposed to medium with low glucose content (5 mmol/L) their volume increased by 17%, p < 0.05. Conclusion Mesothelial cells shrink after exposure to hypertonic medium. Increased intracellular uptake of amino acids may be one of the regulatory mechanisms that ensure subsequent volume increase in these cells. Mesothelial cells chronically exposed to hypertonic medium swell after transfer to a medium with physiologic osmolality.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3