TGF-β1 Induced by High Glucose is Controlled by Angiotensin-Converting Enzyme Inhibitor and Angiotensin II Receptor Blocker on Cultured Human Peritoneal Mesothelial Cells

Author:

Kyuden Yasufumi1,Ito Takafumi1,Masaki Takao1,Yorioka Noriaki1,Kohno Nobuoki1

Affiliation:

1. Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan

Abstract

Background Loss of peritoneal function is a major complication associated with long-term peritoneal dialysis. Observed changes include loss and degeneration of the mesothelium, submesothelial thickening, alterations in the structure and number of blood vessels, and reduplication of the vascular basement membrane. Exposure to high glucose concentrations in peritoneal dialysis solutions is known to cause injury to cultured human peritoneal mesothelial cells (HPMC) as a result of overexpression of transforming growth factor beta 1 (TGF-β1). Previous studies have demonstrated that angiotensin II (AII) increases expression of TGF-β1 in a number of different cell types; although this has not been demonstrated in HPMC. Objective To clarify possible mechanisms involved in peritoneal fibrosis, we investigated whether HPMC expressed AII-forming pathway mRNA and whether increases in AII induced by high glucose contribute to the production of TGF-β1. We also examined the effects of the angiotensin-converting enzyme inhibitor (ACEI) perindoprilat and the AII receptor blocker (ARB) candesartan on expression of TGF-β1 and proliferation of HPMC. Methods Expression of mRNA for the AII-forming pathway and TGF-β1 in HPMC was examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and quantitative RT-PCR. Levels of AII and TGF-β1 following 48 hours of incubation of the cells in a range of glucose concentrations were measured by enzyme immunoassay and enzyme linked immunosorbent assay respectively. The effect of glucose on cell proliferation was examined using the water-soluble tetrazolium salt WST-1 and [3H]-thymidine uptake. We also investigated the effect of ACEI and ARB on the expression of TGF-β1 and the proliferation of HPMC incubated at high glucose for 48 hours. Results AII-forming pathway mRNA was detected in HPMC, with expression of angiotensinogen, angiotensin-converting enzyme (ACE), AII type 1 receptor, and TGF-β1 mRNA increasing following exposure to glucose according to glucose concentration. High glucose was also shown to increase the production of AII and TGF-β1 and decrease the proliferation of HPMC. In contrast, we found that both the ACEI and the ARB attenuated the increase in TGF-β1 production and reduced cell proliferation caused by exposure to high glucose. These effects were greater with a combination of the two drugs. Conclusion The present study provides evidence that ( 1 ) HPMC express mRNA for the AII-forming pathway; ( 2 ) ACEI and ARB inhibit the TGF-β1 production induced by high glucose; ( 3 ) the AII-forming pathway is one mechanism by which high glucose causes production of TGF-β1. In addition to having antihypertensive and renal-protective effects, combination therapy with an ACEI and an ARB may also be effective in preventing loss of peritoneal function and decreasing peritoneal fibrosis.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3