Effects of Conventional and New Peritoneal Dialysis Solutions on Human Peritoneal Mesothelial Cell Viability and Proliferation

Author:

Ha Hunjoo1,Yu Mi Ra1,Choi Hoo Nam1,Cha Mi Kyung1,Kang Hyun Seung1,Kim Mi Ho1,Lee Hi Bahl1

Affiliation:

1. Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea

Abstract

ObjectiveTo investigate the biocompatibility of “new” peritoneal dialysis (PD) solutions with bicarbonate/lactate buffer, non glucose osmotic agents (icodextrin or amino acids), neutral pH, and low levels of glucose degradation products (GDPs).DesignUsing M199 culture medium as a control, we compared conventional and new PD solutions with respect to their effects on the viability of human peritoneal mesothelial cells (HPMCs) [using lactate dehydrogenase (LDH) release], on DNA damage in HPMCs [using single-cell gel electrophoresis (Comet assay)], and on HPMC proliferation (using [3H]-thymidine incorporation). The experiments were performed after cell growth was synchronized by incubation with serum-free media for 24 hours. The PD solutions tested included commercial 1.5% glucose and 4.25% glucose solutions with 40 mmol/L lactate (D 1.5 and D 4.25, respectively), 7.5% icodextrin (E), 1.1% amino acid (N), 1.5% glucose solution in a triple-chambered bag (Bio 1.5), 1.5% glucose solution in a dual-chambered bag with neutral pH (Bal 1.5), and 1.5% glucose and 4.25% glucose solution containing 25 mmol/L bicarbonate and 15 mmol/L lactate (P 1.5 and P 4.25, respectively).ResultsWhen HPMCs were continuously exposed to undiluted PD solutions, D 1.5, D 4.25, P 4.25, and E increased LDH release by more than 60% at 24 hours. All PD solutions tested increased LDH release by more than 75% at 96 hours. With 2-fold diluted PD solutions, only D 4.25 significantly increased LDH release at 96 hours, though not at 24 hours. When cells were exposed to undiluted PD solutions for 60 min and allowed to recover in M199 for up to 96 hours, LDH release was significantly higher at 24 – 96 hours in E (55% – 69%) and D 1.5 (48% –72%) as compared with control [M199 (18%)]. Release of LDH was significantly lower with PD solutions containing lower levels of GDPs than those in D 1.5, suggesting that GDPs may have a role in cell viability. The D solutions (D 1.5 and D 4.25) and E solution also induced significant DNA damage. Both LDH release and DNA damage by D and E were significantly attenuated by adjusting the solution pH to 7.4, suggesting that low pH may be implicated in PD solution–induced DNA damage and cell death. When diluted 2-fold, D 1.5, D 4.25, and P 4.25 decreased [3H]-thymidine incorporation to 43%, 34%, and 41% of control, respectively, at 24 hours and to 45%, 26%, and 35% of control, respectively, at 96 hours. When cells were exposed to undiluted PD solutions for 5 minutes and allowed to recover in M199 for up to 96 hours, D 1.5 and P 4.25—but not D 4.25—significantly inhibited cell proliferation at 24 hours. This effect was sustained up to 96 hours.ConclusionsThe present in vitro data demonstrate that PD solutions with low pH, or high levels of GDPs, or both, promote HPMC death and DNA damage, and that PD solutions with high osmolality inhibit cell proliferation. Solutions with neutral pH, amino acids, and “low GDPs” appear to be more biocompatible than conventional PD solutions. These results require confirmation in in vivo animal and clinical studies.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3