Carbonyl Stress: Increased Carbonyl Modification of Tissue and Cellular Proteins in Uremia

Author:

Miyata Toshio1,Izuhara Yuko1,Sakai Hideto1,Kurokawa Kiyoshi1

Affiliation:

1. Molecular and Cel'ular Nephrology; Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan

Abstract

Advanced glycation end-products (AGEs) are formed during non enzymatic glycation and oxidation (glycoxidation) reactions. This process is accelerated in diabetics owing to hyperglycemia, and it has been implicated in the pathogenesis of diabetic complications. Surprisingly, AGEs increase in normoglycemic uremic patients to a much greater extent than in diabetics. AGE accumulation in uremia cannot be attributed to hyperglycemia nor simply to a decreased removal by glomerular filtration. Recently gathered evidence has suggested that, in uremia, the increased carbonyl compounds derived from carbohydrates and lipids modify proteins not only by glycoxidation reaction but also by lipoxidation reaction (“carbonyl stress”). Carbonyl stress has been implicated in the pathogenesis of long-term uremic complications such as dialysisrelated amyloidosis. With regard to continuous ambulatory peritoneal dialysis (CAPD), the peritoneal cavity appears to be in a state of severe overload of carbonyl compounds derived from CAPD solution containing high glucose, from heat sterilization of the solution, and from uremic circulation. Carbonyl stress might modify not only peritoneal matrix proteins and alter their structures, but also react with mesothelial and endothelial cell surface proteins and initiate a range of inflammatory responses. Carbonyl stress might therefore contribute to the development of peritoneal sclerosis in patients with long-term CAPD.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3