Affiliation:
1. Department of Nephrology, Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
Abstract
Introduction: Glucose absorption during peritoneal dialysis (PD) is commonly assumed to occur via paracellular pathways. We recently showed that SGLT2 inhibition did not reduce glucose absorption in experimental PD, but the potential role of glucose transport into cells is still unclear. Here we sought to elucidate the effects of phlorizin, a non-selective competitive inhibitor of sodium glucose co-transporters 1 and 2 (SGLT1 and SGLT2), in an experimental rat model of PD. Methods: A 120-min PD dwell was performed in 12 anesthetised Sprague-Dawley rats using 1.5% glucose fluid with a fill volume of 20 mL with ( n = 6) or without ( n = 6) intraperitoneal phlorizin (50 mg/L). Several parameters for peritoneal water and solute transport were monitored during the treatment. Results: Phlorizin markedly increased the urinary excretion of glucose, lowered plasma glucose and increased plasma creatinine after PD. Median glucose diffusion capacity at 60 min was significantly lower ( p < 0.05) being 196 µL/min (IQR 178–213) for phlorizin-treated animals compared to 238 µL/min (IQR 233–268) in controls. Median fractional dialysate glucose concentration at 60 min ( D/ D 0) was significantly higher ( p < 0.05) in phlorizin-treated animals being 0.65 (IQR 0.63–0.67) compared to 0.61 (IQR 0.60–0.62) in controls. At 120 min, there was no difference in solute or water transport across the peritoneal membrane. Conclusion: Our findings indicate that a part of glucose absorption during the initial part of the dwell occurs via transport into peritoneal cells.
Subject
Nephrology,General Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献