Cytotoxicity of Mononuclear Cells as Induced by Peritoneal Dialysis Fluids: Insight into Mechanisms that Regulate Osmotic Stress-Related Apoptosis

Author:

Gastaldello Karine1,Husson Cecile1,Dondeyne Jean-Paul1,Vanherweghem Jean-Louis2,Tielemans Christian12

Affiliation:

1. Laboratoire de Recherche en Nephrologie, Université Libre de Bruxelles

2. Department of Nephrology, Dialysis and Transplantation, Hôpital Erasme, Brussels, Belgium

Abstract

Objective High glucose content of peritoneal dialysis fluids (PDFs) has been shown to contribute to loss of peritoneal function during long-term peritoneal dialysis. However, hyperosmolality and hypertonicity of PDF are usually seen as similar stress events inducing osmotic stress-induced programmed cell death. In this study, we examined the impact of various osmotic agents on apoptosis induced by hyperosmolar PDFs, focusing on the mechanisms underlying the lethal effects of PDFs on peripheral blood mono-nuclear cells (PBMCs). Methods We assessed apoptosis and necrosis by annexin V–propidium iodide (PI) labeling, and caspase-3 activity by fluorescence assay. F-actin remodeling was measured using fluorescent phalloidin labeling. Results Hyperosmolality does not cause the cytotoxicity observed with PDF, but exposure to agents incapable of permeating cell membranes results in a significant increase in the percentage of apoptotic PBMCs by annexin V–PI labeling, which is confirmed by the increase in caspase-3 activity. Interestingly, inhibition of caspase-3 by Z-VAD-FMK did not suppress apoptosis. Extracellular hypertonicity produced polymerization of filamentous actin and cell shrinkage, which displayed similar time courses. Cell shrinkage was blocked by cytochalasin D, indicating an active role for actin cytoskeleton in hypertonicity-induced cell shrinkage. F-actin polymerization was related to an increase in intra-cellular ionic strength. Finally, we excluded a direct role for actin remodeling in osmotic stress-induced programmed cell death. Conclusions Exposure to osmolytes that cannot penetrate cell membranes results in a hypertonicity-induced apoptosis that cannot be blocked by the broad-spectrum caspase inhibitor Z-VAD-FMK. In addition, extracellular hypertonicity induced by impermeant solutes produces F-actin polymerization through an increase in intracellular ionic strength. The remodeling of the cytoskeleton does not modulate apoptosis but participates in cell shrinkage.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3