Pyridine levels in ceftazidime – peritoneal dialysis admixtures stored at body temperature

Author:

Nguyen Tien T1,Harmanjeet Harmanjeet1,Wanandy Troy2,Castelino Ronald L3,Sud Kamal4,Jose Matthew D1,Peterson Gregory M1,Zaidi Syed Tabish R5,Patel Rahul P1

Affiliation:

1. Department of Pharmacy, School of Medicine, University of Tasmania Hobart, Tasmania, Australia

2. Pharmacy, Royal Hobart Hospital, Tasmania, Australia

3. Sydney Nursing School, University of Sydney, New South Wales, Australia

4. Department of Renal Medicine, Nepean Clinical School, Nepean Hospital Kingswood, University of Sydney, New South Wales, Australia

5. School of Healthcare, University of Leeds, United Kingdom

Abstract

Background:For the treatment of peritoneal dialysis-associated peritonitis (PDAP), ceftazidime is routinely admixed with peritoneal dialysis (PD) solutions before its intraperitoneal administration. One of the major degradation products of ceftazidime is pyridine, a potentially toxic compound. Depending on the type of PD solution, ceftazidime is exposed to an environment with acidic or basic pH, and depending on the type of dosing and individual unit practices related to preparation and storage, ceftazidime can be at body temperature for 4–10 h, resulting in potentially varying rates of degradation to pyridine by-product. No study has investigated whether the amount of generated pyridine exceeds the maximum daily exposure limit of 2 mg when ceftazidime-PD admixtures are kept at body temperature. Therefore, the current study aimed to determine the levels of pyridine generated in PD-ceftazidime admixtures kept at 37°C for various time points.Methods:Ceftazidime was admixed with 2 L Dianeal (1.5%, 2.5% and 4.25% dextrose) and 2 L Physioneal (1.36%, 2.27% and 3.86% glucose) PD solutions to obtain a concentration of 125 mg/L (continuous dosing model) or 500 mg/L (intermittent dosing model). A total of 36 PD admixtures (3 bags for each type of PD solution and 3 bags for each type of dosing) were prepared and stored at 37°C for 10 h. An aliquot was withdrawn at time 0 (baseline) and after 2, 6, 8 and 10 h of storage. The withdrawn samples were then analysed to determine the concentrations of ceftazidime and pyridine using high-performance liquid chromatography.Results:With the intermittent dosing model (500 mg/L), ceftazidime was found to be stable for only 2 and 6 h when admixed with 3.86% and 2.27% glucose Physioneal PD solutions, respectively. While ceftazidime (500 mg/L) retained more than 90% of its initial concentration in the three types of Dianeal and 1.36% dextrose Physioneal solutions for 10 and 8 h, respectively, the generated amount of pyridine ranged between approximately 290% and 371% more than the daily recommended limit. With the continuous dosing model (125 mg/L), ceftazidime was found to be stable for 6 h in all three types of Physioneal PD solutions, but the total amount of generated pyridine with four daily exchanges (6 h each) was estimated to be 170–360% over the daily recommended limit. Ceftazidime (125 mg/L) was chemically stable when admixed with three types of Dianeal PD solutions and stored at 37°C for 10 h, and the levels of pyridine were estimated to be less than the maximum recommended daily limit.Conclusions:Until the outcomes of this in vitro study are confirmed by appropriate in vivo studies, continuous dosing of ceftzadime–Dianeal admixtures for the treatment of PDAP may be preferred over continuous dosing of ceftazidime–Physioneal admixtures, and intermittent dosing of ceftazidime–Physioneal and ceftazidime–Dianeal admixtures, as ceftazidime remains stable and the generated levels of pyridine are below the maximum recommended daily exposure.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3