Peritoneal Injury by Methylglyoxal in Peritoneal Dialysis

Author:

Hirahara Ichiro1,Kusano Eiji1,Yanagiba Satoru1,Miyata Yukio1,Ando Yasuhiro1,Muto Shigeaki1,Asano Yasushi1

Affiliation:

1. Department of Nephrology, Jichi Medical School, Kawachi-gun, Tochigi, Japan

Abstract

Background Peritoneal dialysis (PD) is a common treatment for patients with reduced or absent renal function. Long-term PD leads to peritoneal injury with structural changes and functional decline, such as ultrafiltration loss. At worst, peritoneal injury leads to encapsulating peritoneal sclerosis, a serious complication of PD. Glucose degradation products contained in PD fluids contribute to the bioincompatibility of conventional PD fluids. Methylglyoxal (MGO) is an extremely toxic glucose degradation product. The present study examined the injurious effect of MGO on peritoneum in vivo. Methods Male Sprague–Dawley rats ( n = 6) were administered PD fluids (pH 5.0) containing 0, 0.66, 2, 6.6, or 20 mmol/L MGO every day for 21 days. On day 22, peritoneal function was estimated by the peritoneal equilibration test. Drained dialysate was analyzed for type IV collagen-7S, matrix metalloproteinase (MMP), and vascular endothelial growth factor (VEGF). Histological analysis was also performed. Results In rats receiving PD fluids containing more than 0.66 mmol/L MGO, peritoneal function decreased significantly and levels of type IV collagen-7S and MMP-2 in drained dialysate increased significantly. In the 20-mmol/L MGO-treated rats, loss of body weight, expression of VEGF, thickening of the peritoneum, and formation of abdominal cocoon were induced. MMP-2 and VEGF were produced by infiltrating cells in the peritoneum. Type IV collagen was detected in basement membrane of microvessels. Conclusion MGO induced not only peritoneal injury but also abdominal cocoon formation in vivo. The decline of peritoneal function may result from reconstitution of microvessel basement membrane or neovascularization.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3