Protein Adsorption onEX VIVOCatheters and Polymers Exposed to Peritoneal Dialysis Effluent

Author:

Yanagisawa Naoko1,Li Dai-Qing1,Ljungh Åsa1

Affiliation:

1. Medical Microbiology, Dermatology and Infection, Lund University, Lund, Sweden

Abstract

BackgroundDeposition of proteins on surfaces of medical devices has been recognized to putatively relate to the process of regulation of biomaterial-associated complications by attachment of fibrin clots, eukaryotic cells, and microbes. The molecules adsorb to a varying extent, depending not only on the physicochemical properties of the biomaterial, but also on the composition of the host fluid.ObjectiveAdsorption of proteins on catheters exposed both ex vivo and in vitro to dialysate of patients on peritoneal dialysis (PD) was studied.MethodsPeritoneal dialysis effluent was collected from 5 patients with end-stage renal disease on continuous ambulatory PD. Tenckhoff catheters were obtained from 16 patients. Deposition of proteins on excised Tenckhoff catheters and tubing of different materials exposed to PD effluent in vitro was studied using125iodine-labeled antibodies. Adhesion of Staphylococcus aureus and Staphylococcus epidermidis strains was quantified on tubing exposed to PD effluent in vitro.ResultsThe presence of albumin, transferrin, immunoglobulin G, fibrinogen, fibronectin, von Willebrand factor, vitronectin, and thrombospondin was determined at various concentrations in PD effluent. All proteins analyzed were detected on PD catheters removed from patients. The extent of protein deposition on Tenckhoff catheters exposed to PD effluent, in vitro, rapidly reached a plateau and remained constant, as it did on polyvinyl chloride and polyethylene tubing. Adhesion of staphylococci was enhanced on Tenckhoff catheters exposed to PD effluent compared to unused PD solution.ConclusionsThe data identify surface exposed proteins that may serve as adhesion sites for microbes on peritoneal catheters indwelled in patients undergoing PD.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fungal Biofilms and Polymicrobial Diseases;Journal of Fungi;2017-05-10

2. In Vivo Candida Device Biofilm Models;Candida albicans: Cellular and Molecular Biology;2017

3. The Host’s Reply to Candida Biofilm;Pathogens;2016-03-18

4. Host Contributions to Construction of Three Device-Associated Candida albicans Biofilms;Infection and Immunity;2015-12

5. Fungal Biofilms:In VivoModels for Discovery of Anti-Biofilm Drugs;Microbial Biofilms;2015-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3