Extracellular vesicle species differentially affect endothelial cell functions and differentially respond to exercise training in patients with chronic coronary syndromes

Author:

Kränkel Nicolle1234,Strässler Elisabeth1234,Uhlemann Madlen5,Müller Maja6,Briand-Schumacher Sylvie4,Klingenberg Roland6,Schulze P Christian7,Adams Volker58,Schuler Gerhard5,Lüscher Thomas F49,Möbius-Winkler Sven57,Landmesser Ulf12346

Affiliation:

1. Department of Cardiology, Charité-Universitätsmedizin Berlin, Germany

2. German Center for Cardiovascular Research (DZHK), Germany

3. Berlin Institute of Health, Germany

4. Center of Molecular Cardiology, University of Zurich, Switzerland

5. Heart Center, University of Leipzig, Germany

6. Department of Cardiology, University Hospital Zurich, Switzerland

7. Department of Internal Medicine I, University Hospital Jena, Germany

8. Heart Center Dresden, TU Dresden, Germany

9. Heart Division, Royal Brompton and Harefield Hospitals, UK

Abstract

Abstract Background Extracellular vesicles are released upon cellular activation and mediate inter-cellular communication. Individual species of extracellular vesicles might have divergent roles in vascular homeostasis and may show different responses to therapies such as exercise training. Aims We examine endothelial effects of medium-size and small extracellular vesicles from the same individual with or without chronic coronary syndrome, and in chronic coronary syndrome patients participating in a four-week high-intensity interval training intervention. Methods Human aortic endothelial cells were exposed to medium-size extracellular vesicles and small extracellular vesicles isolated from plasma samples of study participants. Endothelial cell survival, activation and re-endothelialisation capacity were assessed by respective staining protocols. Extracellular vesicles were quantified by nanoparticle tracking analysis and flow cytometry. Extracellular vesicle microRNA expression was quantified by realtime-quantitative polymerase chain reaction. Results In patients with chronic coronary syndrome (n = 25), plasma counts of leukocyte-derived medium-size extracellular vesicles were higher than in age-matched healthy controls (n = 25; p = 0.04) and were reduced by high-intensity interval training (n = 15; p = 0.01 vs baseline). Re-endothelialisation capacity was promoted by medium-size extracellular vesicles from controls, but not by medium-size extracellular vesicles from chronic coronary syndrome patients. High-intensity interval training for 4 weeks enhanced medium-size extracellular vesicle-mediated support of in vitro re-endothelialisation. Small extracellular vesicles from controls or chronic coronary syndrome patients increased endothelial cell death and reduced repair functions and were not affected by high-intensity interval training. Conclusion The present study demonstrates that medium-size extracellular vesicles and small extracellular vesicles differentially affect endothelial cell survival and repair responses. This equilibrium is unbalanced in patients with chronic coronary syndrome where leukocyte-derived medium-size extracellular vesicles are increased leading to a loss of medium-size extracellular vesicle-mediated endothelial repair. High-intensity interval training partially restored medium-size extracellular vesicle-mediated endothelial repair, underlining its use in cardiovascular prevention and therapy to improve endothelial function.

Funder

Swiss National Science Foundation

Novartis Foundation

BIH

DZHK

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine,Epidemiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3