Restoration of the blood pressure circadian rhythm by direct renin inhibition and blockade of angiotensin II receptors in mRen2.Lewis hypertensive rats

Author:

Moniwa Norihito,Varagic Jasmina,Ahmad Sarfaraz,VonCannon Jessica L.,Ferrario Carlos M.

Abstract

Background: Alterations in the circadian arterial pressure rhythm predict cardiovascular mortality. We examined the circadian arterial pressure rhythm and the effect of renin–angiotensin system blockade in congenic mRen2.Lewis hypertensive rats, a renin-dependent model of hypertension derived from the backcross of transgenic hypertensive [mRen-2]27 rats with Lewis normotensive ones. Methods: Twenty-nine mRen2.Lewis hypertensive rats were randomly assigned to drink tap water (vehicle; n = 9), valsartan (30 mg/kg/day; n = 10), or valsartan (30 mg/kg/day) combined with aliskiren given subcutaneously (50 mg/kg/day; n = 10) for 2 weeks. Arterial pressure, heart rate, and locomotive activity were recorded with chronically implanted radiotelemetry probes. The awake/asleep ratio was calculated as [awake mean arterial pressure (MAP) mean – asleep MAP mean)] / (awake MAP mean) x 100. Plasma renin activity (PRA) and concentration (PRC), and plasma and kidney angiotensin II (Ang II) were measured by radioimmunoassay (RIAs). Results: Untreated hypertensive rats showed an inverse arterial pressure rhythm, higher at day and lower at night, accompanied by normal rhythms of heart rate and locomotive activity. Treatment with valsartan or aliskiren and valsartan normalized the elevated arterial pressure and the arterial pressure rhythm, with the combination therapy being more effective in reducing MAP and in restoring the awake/asleep ratio. While PRA and PRC increased with the treatments, the addition of aliskiren to valsartan partially reversed the increases in plasma Ang II levels. Valsartan and the aliskiren and valsartan combination markedly reduced the renal cortical content of Ang II. Conclusion: The altered circadian arterial pressure rhythm in this renin-dependent hypertension model uncovers a significant role of Ang II in the desynchronization of the circadian rhythm of arterial pressure, heart rate, and locomotive activity.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3