Current recommendations/practices for anonymising data from clinical trials in order to make it available for sharing: A scoping review

Author:

Rodriguez Aryelly1ORCID,Tuck Christopher2,Dozier Marshall F3,Lewis Stephanie C1,Eldridge Sandra4,Jackson Tracy5ORCID,Murray Alastair6,Weir Christopher J1ORCID

Affiliation:

1. Edinburgh Clinical Trials Unit, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK

2. Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK

3. Library & University Collections, Information Services, The University of Edinburgh, Edinburgh, UK

4. Pragmatic Clinical Trials Unit, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK

5. Asthma UK Centre for Applied Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK

6. Independent Researcher, Edinburgh, UK

Abstract

Background/Aims There are increasing pressures for anonymised datasets from clinical trials to be shared across the scientific community, and differing recommendations exist on how to perform anonymisation prior to sharing. We aimed to systematically identify, describe and synthesise existing recommendations for anonymising clinical trial datasets to prepare for data sharing. Methods We systematically searched MEDLINE®, EMBASE and Web of Science from inception to 8 February 2021. We also searched other resources to ensure the comprehensiveness of our search. Any publication reporting recommendations on anonymisation to enable data sharing from clinical trials was included. Two reviewers independently screened titles, abstracts and full text for eligibility. One reviewer extracted data from included papers using thematic synthesis, which then was sense-checked by a second reviewer. Results were summarised by narrative analysis. Results Fifty-nine articles (from 43 studies) were eligible for inclusion. Three distinct themes are emerging: anonymisation, de-identification and pseudonymisation. The most commonly used anonymisation techniques are: removal of direct patient identifiers; and careful evaluation and modification of indirect identifiers to minimise the risk of identification. Anonymised datasets joined with controlled access was the preferred method for data sharing. Conclusions There is no single standardised set of recommendations on how to anonymise clinical trial datasets for sharing. However, this systematic review shows a developing consensus on techniques used to achieve anonymisation. Researchers in clinical trials still consider that anonymisation techniques by themselves are insufficient to protect patient privacy, and they need to be paired with controlled access.

Funder

Asthma UK Centre for Applied Research

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3