Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials

Author:

Jones Ashley P1,Riley Richard D2,Williamson Paula R3,Whitehead Anne3

Affiliation:

1. Centre for Medical Statistics and Health Evaluation, School of Health Sciences, University of Liverpool, Brownlow Street, Liverpool, L69 3GS, UK,

2. Public Health, Epidemiology & Biostatistics, The Public Health Building, The University of Birmingham, Birmingham B15 2TT

3. Centre for Medical Statistics and Health Evaluation, School of Health Sciences, University of Liverpool, Brownlow Street, Liverpool, L69 3GS, UK

Abstract

Background In clinical trials following individuals over a period of time, the same assessment may be made at a number of time points during the course of the trial. Our review of current practice for handling longitudinal data in Cochrane systematic reviews shows that the most frequently used approach is to ignore the correlation between repeated observations and to conduct separate meta-analyses at each of a number of time points. Purpose The purpose of this paper is to show the link between repeated measurement models used with aggregate data and those used when individual patient data (IPD) are available, and provide guidance on the methods that practitioners might use for aggregate data meta-analyses, depending on the type of data available. Methods We discuss models for the meta-analysis of longitudinal continuous outcome data when IPD are available. In these models time is included either as a factor or as a continuous variable, and account is taken of the correlation between repeated observations. The meta-analysis of IPD can be conducted using either a one-step or a two-step approach: the latter involves analysing the IPD separately in each study and then combining the study estimates taking into account their covariance structure. We discuss the link between models for use with aggregate data and the two-step IPD approach, and the problems which arise when only aggregate data are available. The methods are applied to IPD from 5 trials in Alzheimer's disease. Results Two major issues for the meta-analysis of aggregate data are the lack of information about correlation coefficients and the effect of missing data at the patient-level. Application to the Alzheimer's disease data set shows that ignoring correlation can lead to different pooled estimates of the treatment difference and their standard errors. Furthermore, the amount of missing data at the patient level can affect these estimates. Limitations The models assume fixed treatment effects across studies, and that any missing data is missing at random, both at the patient-level and the study level. Conclusions It is preferable to obtain IPD from all studies to correctly account for the correlation between repeated observations. When IPD are not available, the ideal aggregate data are model-based estimates of treatment difference and their variance and covariance estimates. If covariance estimates are not available, sensitivity analyses should be undertaken to investigate the robustness of the results to different amounts of correlation. Clinical Trials 2009; 6: 16—27. http:// ctj.sagepub.com

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3