Central statistical monitoring: Detecting fraud in clinical trials

Author:

Pogue Janice M123,Devereaux PJ12,Thorlund Kristian1,Yusuf Salim12

Affiliation:

1. Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada

2. Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada

3. Population Health Research Institute, Hamilton Health Sciences, Hamilton, ON, Canada

Abstract

Background Central statistical monitoring in multicenter trials could allow trialists to identify centers with problematic data or conduct and intervene while the trial is still ongoing. Currently, there are few published models that can be used for this purpose. Purpose To develop and validate a series of risk scores to identify fabricated data within a multicenter trial, to be used in central statistical monitoring. Methods We used a database from a multicenter trial in which data from 9 of 109 centers were documented to be fabricated. These data were used to build a series of risk scores to predict fraud at centers. All analyses were performed at the level of the center. Exploratory factor analysis was used to select from 52 possible predictors, chosen from a variety of previously published methods. The final models were selected from a total of 18 independent predictors, based on the factors identified. These models were converted to risk scores for each center. Results Five different risk scores were identified, and each had the ability to discriminate well between centers with and without fabricated data (area under the curve values ranged from 0.90 to 0.95). True- and false-positive rates are presented for each risk score to arrive at a recommended cutoff of seven or above (high risk score). We validated these risk scores, using an independent multicenter trial database that contained no data fabrication and found the occurrence of false-positive high scores to be low and comparable to the model-building data set. Limitations These risk score have been validated only for their false-positive rate and require validation within another trial that contains centers that have fabricated data. Validation in noncardiovascular trials is also required to gage the usefulness of these risk scores in central statistical monitoring. Conclusions With further validation, these risk scores could become part of a series of tools that provide evidence-based central statistical monitoring, which in turn can improve the efficiency of trials, and minimize the need for more expensive on-site monitoring.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3