Applying the law of iterated logarithm to control type I error in cumulative meta-analysis of binary outcomes

Author:

Hu Mingxiu1,Cappelleri Joseph C2,Lan K K Gordon3

Affiliation:

1. Millennium Pharmaceuticals, 35 Landsdowne Street, Cambridge, MA 02139, USA,

2. Pfizer Global Research & Development, New London, CT 06320, USA

3. Johnson and Johnson, New Brunswick, NJ 08933, USA

Abstract

Background Cumulative meta-analysis typically involves performing an updated meta-analysis every time when new trials are added to a series of similar trials, which by definition involves multiple inspections. Neither the commonly used random effects model nor the conventional group sequential method can control the type I error for many practical situations. In our previous research, Lan et al. (Lan KKG, Hu M-X, Cappelleri JC. Applying the law of iterated logarithm to cumulative meta-analysis of a continuous endpoint. Statistica Sinica 2003; 13: 1135—45) proposed an approach based on the law of iterated logarithm (LIL) to this problem for the continuous case. Purpose The study is an extension and generalization of our previous research to binary outcomes. Although it is based on the same LIL principle, we found the discrete case much more complex and the results from the continuous case do not apply to the binary case. The simulation study presented here is also more extensive. Methods The LIL based method `penalizes' the Z-value of the test statistic to account for multiple tests and for the estimation of heterogeneity in treatment effects across studies. It involves an adjustment factor, which is directly related to the control of type I error and determined through extensive simulations under various conditions. Results With an adjustment factor of 2, the LIL-based test statistics controls the overall type I error when odds ratio or relative risk is the parameter of interest. For risk difference, the adjustment factor can be reduced to 1.5. More inspections may require a larger adjustment factor, but the required adjustment factor stabilizes after 25 inspections. Limitations It will be ideal if the adjustment factor can be obtained theoretically through a statistical model. Unfortunately, real life data are too complex and we have to solve the problem through simulation. However, for large number of inspections, the adjustment factor will have a limited effect and the type I error is controlled mainly by the LIL. Conclusions The LIL method controls the overall type I error for a very broad range of practical situations with a binary outcome, and the LIL works properly in controlling the type I error rates as the number of inspections becomes large. Clinical Trials 2007; 4: 329—340. http://ctj.sagepub.com

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3