Utilizing the integrated difference of two survival functions to quantify the treatment contrast for designing, monitoring, and analyzing a comparative clinical study

Author:

Zhao Lihui1,Tian Lu2,Uno Hajime34,Solomon Scott D5,Pfeffer Marc A5,Schindler Jerald S6,Wei Lee Jen3

Affiliation:

1. Department of Preventive Medicine, Northwestern University, Chicago, IL, USA

2. Department of Health Research and Policy, Stanford University, Stanford, CA, USA

3. Department of Biostatistics, Harvard University, Boston, MA, USA

4. Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA

5. Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA, USA

6. Merck Research Laboratories, Rahway, NJ, USA

Abstract

Background Consider a comparative, randomized clinical study with a specific event time as the primary end point. In the presence of censoring, standard methods of summarizing the treatment difference are based on Kaplan–Meier curves, the logrank test, and the point and interval estimates via Cox’s procedure. Moreover, for designing and monitoring the study, one usually utilizes an event-driven scheme to determine the sample sizes and interim analysis time points. Purpose When the proportional hazards (PHs) assumption is violated, the logrank test may not have sufficient power to detect the difference between two event time distributions. The resulting hazard ratio estimate is difficult, if not impossible, to interpret as a treatment contrast. When the event rates are low, the corresponding interval estimate for the ‘hazard ratio’ can be quite large due to the fact that the interval length depends on the observed numbers of events. This may indicate that there is not enough information for making inferences about the treatment comparison even when there is no difference between two groups. This situation is quite common for a postmarketing safety study. We need an alternative way to quantify the group difference. Methods Instead of quantifying the treatment group difference using the hazard ratio, we consider an easily interpretable and model-free parameter, the integrated survival rate difference over a prespecified time interval, as an alternative. We present the inference procedures for such a treatment contrast. This approach is purely nonparametric and does not need any model assumption such as the PHs. Moreover, when we deal with equivalence or noninferiority studies and the event rates are low, our procedure would provide more information about the treatment difference. We used a cardiovascular trial data set to illustrate our approach. Results The results using the integrated event rate differences have a heuristic interpretation for the treatment difference even when the PHs assumption is not valid. When the event rates are low, for example, for the cardiovascular study discussed in this article, the procedure for the integrated event rate difference provides tight interval estimates in contrast to those based on the event-driven inference method. Limitations The design of a trial with the integrated event rate difference may be more complicated than that using the event-driven procedure. One may use simulation to determine the sample size and the estimated duration of the study. Conclusions The procedure discussed in this article can be a useful alternative to the standard PHs method in the survival analysis.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3