Simulating sequential multiple assignment randomized trials to generate optimal personalized warfarin dosing strategies

Author:

Rich Benjamin1,Moodie Erica EM2,Stephens David A3

Affiliation:

1. Division of Clinical Epidemiology, McGill University Health Centre, Montreal, QC, Canada

2. Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada

3. Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada

Abstract

Background Due to the cost and complexity of conducting a sequential multiple assignment randomized trial (SMART), it is desirable to pre-define a small number of personalized regimes to study. Purpose We proposed a simulation-based approach to studying personalized dosing strategies in contexts for which a therapeutic agent’s pharmacokinetic and pharmacodynamics properties are well understood. We take dosing of warfarin as a case study, as its properties are well understood. We consider a SMART in which there are five intervention points in which dosing may be modified, following a loading phase of treatment. Methods Realistic SMARTs are simulated, and two methods of analysis, G-estimation and Q-learning, are used to assess potential personalized dosing strategies. Results In settings where outcome modelling may be complex due to the highly non-linear nature of the pharmacokinetic and pharmacodynamics mechanisms of the therapeutic agent, G-estimation provides for which the more promising method of estimating an optimal dosing strategy. Used in combination with the simulated SMARTs, we were able to improve simulated patient outcomes and suggest which patient characteristics were needed to best individually tailor dosing. In particular, our simulations suggest that current dosing should be determined by an individual’s current coagulation time as measured by the international normalized ratio (INR), their last measured INR, and their last dose. Tailoring treatment only based on current INR and last warfarin dose provided inferior control of INR over the course of the trial. Limitations The ability of the simulated SMARTs to suggest optimal personalized dosing strategies relies on the pharmacokinetic and pharmacodynamic models used to generate the hypothetical patient profiles. This approach is best suited to therapeutic agents whose effects are well studied. Conclusion Prior to investing in a complex randomized trial that involves sequential treatment allocations, simulations should be used where possible in order to guide which dosing strategies to evaluate.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3