Joint testing of overall and simple effects for the two-by-two factorial trial design

Author:

Leifer Eric S1ORCID,Troendle James F1,Kolecki Alexis1,Follmann Dean A2ORCID

Affiliation:

1. Office of Biostatistics Research, Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH/DHHS, Bethesda, MD, USA

2. Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA

Abstract

Background/aims: The two-by-two factorial design randomizes participants to receive treatment A alone, treatment B alone, both treatments A and B( AB), or neither treatment ( C). When the combined effect of A and B is less than the sum of the A and B effects, called a subadditive interaction, there can be low power to detect the A effect using an overall test, that is, factorial analysis, which compares the A and AB groups to the C and B groups. Such an interaction may have occurred in the Action to Control Cardiovascular Risk in Diabetes blood pressure trial (ACCORD BP) which simultaneously randomized participants to receive intensive or standard blood pressure, control and intensive or standard glycemic control. For the primary outcome of major cardiovascular event, the overall test for efficacy of intensive blood pressure control was nonsignificant. In such an instance, simple effect tests of A versus C and B versus C may be useful since they are not affected by a subadditive interaction, but they can have lower power since they use half the participants of the overall trial. We investigate multiple testing procedures which exploit the overall tests’ sample size advantage and the simple tests’ robustness to a potential interaction. Methods: In the time-to-event setting, we use the stratified and ordinary logrank statistics’ asymptotic means to calculate the power of the overall and simple tests under various scenarios. We consider the A and B research questions to be unrelated and allocate 0.05 significance level to each. For each question, we investigate three multiple testing procedures which allocate the type 1 error in different proportions for the overall and simple effects as well as the AB effect. The Equal Allocation 3 procedure allocates equal type 1 error to each of the three effects, the Proportional Allocation 2 procedure allocates 2/3 of the type 1 error to the overall A (respectively, B) effect and the remaining type 1 error to the AB effect, and the Equal Allocation 2 procedure allocates equal amounts to the simple A (respectively, B) and AB effects. These procedures are applied to ACCORD BP. Results: Across various scenarios, Equal Allocation 3 had robust power for detecting a true effect. For ACCORD BP, all three procedures would have detected a benefit of intensive glycemia control. Conclusions: When there is no interaction, Equal Allocation 3 has less power than a factorial analysis. However, Equal Allocation 3 often has greater power when there is an interaction. The R package factorial2x2 can be used to explore the power gain or loss for different scenarios.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3