A Bayesian dose-finding design for outcomes evaluated with uncertainty

Author:

Schipper Matthew J12ORCID,Yuan Ying3,Taylor Jeremy MG12,Ten Haken Randall K2,Tsien Christina4,Lawrence Theodore S2

Affiliation:

1. Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA

2. Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA

3. Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

4. Department of Radiation Oncology, Johns Hopkins Medicine, Baltimore, MD, USA

Abstract

Introduction: In some phase I trial settings, there is uncertainty in assessing whether a given patient meets the criteria for dose-limiting toxicity. Methods: We present a design which accommodates dose-limiting toxicity outcomes that are assessed with uncertainty for some patients. Our approach could be utilized in many available phase I trial designs, but we focus on the continual reassessment method due to its popularity. We assume that for some patients, instead of the usual binary dose-limiting toxicity outcome, we observe a physician-assessed probability of dose-limiting toxicity specific to a given patient. Data augmentation is used to estimate the posterior probabilities of dose-limiting toxicity at each dose level based on both the fully observed and partially observed patient outcomes. A simulation study is used to assess the performance of the design relative to using the continual reassessment method on the true dose-limiting toxicity outcomes (available in simulation setting only) and relative to simple thresholding approaches. Results: Among the designs utilizing the partially observed outcomes, our proposed design has the best overall performance in terms of probability of selecting correct maximum tolerated dose and number of patients treated at the maximum tolerated dose. Conclusion: Incorporating uncertainty in dose-limiting toxicity assessment can improve the performance of the continual reassessment method design.

Funder

Center for Scientific Review

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3