Prospective alpha allocation in the clarification of optimal anticoagulation through genetics (COAG) trial

Author:

Joo Jungnam1,Geller Nancy L2,French Benjamin3,Kimmel Stephen E3,Rosenberg Yves4,Ellenberg Jonas H3

Affiliation:

1. Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA,

2. Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA

3. Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA

4. Atherothrombosis and Coronary Artery Disease Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA

Abstract

Background The Clarification of Optimal Anticoagulation through Genetics (COAG) trial is a large, multicenter, double-blinded, randomized trial to determine whether use of a genotype-guided dosing algorithm (using clinical and genetic information) to initiate warfarin treatment will improve anticoagulation status when compared to a dosing algorithm using only clinical information. Purpose This article describes prospective alpha allocation and balanced alpha allocation for the design of the COAG trial. Methods The trial involves two possibly heterogeneous populations, which can be distinguished by the difference in warfarin dose as predicted by the two algorithms. A statistical approach is detailed, which allows an overall comparison as well as a comparison of the primary endpoint in the subgroup for which sufficiently different doses are predicted by the two algorithms. Methods of allocating alpha for these analyses are given — a prospective alpha allocation and allocating alpha so that the two analyses have equal power, which we call a ‘balanced alpha allocation.’ Results We show how to include an analysis of the primary endpoint in a subgroup as a co-primary analysis. Power can be improved by incorporating the correlation between the overall and subgroup analyses in a prospective alpha allocation approach. Balanced alpha allocation for the full cohort and subgroup tests to achieve the same desired power for both of the primary analyses is discussed in detail. Limitations In the COAG trial, it is impractical to stratify the randomization on subgroup membership because genetic information may not be available at the time of randomization. If imbalances in the treatment arms in the subgroup are found, they will need to be addressed. Conclusions The design of the COAG trial assures that the subgroup in which the largest treatment difference is expected is elevated to a co-primary analysis. Incorporating the correlation between the full cohort and the subgroup analyses provides an improvement in power for the subgroup comparison, and further improvement may be achieved via a balanced alpha allocation approach when the parameters involved in the sample size calculation are reasonably well estimated. Clinical Trials 2010; 7: 597—604. http://ctj.sagepub.com

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3