Model calibration in the continual reassessment method

Author:

Lee Shing M1,Ying Kuen Cheung 2

Affiliation:

1. Department of Biostatistics, Mailman School of Public Health, Columbia University, NY, USA,

2. Department of Biostatistics, Mailman School of Public Health, Columbia University, NY, USA

Abstract

Background The continual reassessment method (CRM) is an adaptive model-based design used to estimate the maximum tolerated dose in dose finding clinical trials. A way to evaluate the sensitivity of a given CRM model including the functional form of the dose-toxicity curve, the prior distribution on the model parameter, and the initial guesses of toxicity probability at each dose is using indifference intervals. While the indifference interval technique provides a succinct summary of model sensitivity, there are infinitely many possible ways to specify the initial guesses of toxicity probability. In practice, these are generally specified by trial and error through extensive simulations. Methods By using indifference intervals, the initial guesses used in the CRM can be selected by specifying a range of acceptable toxicity probabilities in addition to the target probability of toxicity. An algorithm is proposed for obtaining the indifference interval that maximizes the average percentage of correct selection across a set of scenarios of true probabilities of toxicity and providing a systematic approach for selecting initial guesses in a much less time-consuming manner than the trial-and-error method. The methods are compared in the context of two real CRM trials. Results For both trials, the initial guesses selected by the proposed algorithm had similar operating characteristics as measured by percentage of correct selection, average absolute difference between the true probability of the dose selected and the target probability of toxicity, percentage treated at each dose and overall percentage of toxicity compared to the initial guesses used during the conduct of the trials which were obtained by trial and error through a time-consuming calibration process. The average percentage of correct selection for the scenarios considered were 61.5 and 62.0% in the lymphoma trial, and 62.9 and 64.0% in the stroke trial for the trial-and-error method versus the proposed approach. Limitations We only present detailed results for the empiric dose toxicity curve, although the proposed methods are applicable for other dose—toxicity models such as the logistic. Conclusions The proposed method provides a fast and systematic approach for selecting initial guesses of probabilities of toxicity used in the CRM that are competitive to those obtained by trial and error through a time-consuming process, thus, simplifying the model calibration process for the CRM.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3