A permutation procedure to detect heterogeneous treatment effects in randomized clinical trials while controlling the type I error rate

Author:

Wolf Jack M1ORCID,Koopmeiners Joseph S1,Vock David M1

Affiliation:

1. Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA

Abstract

Background/Aims Secondary analyses of randomized clinical trials often seek to identify subgroups with differential treatment effects. These discoveries can help guide individual treatment decisions based on patient characteristics and identify populations for which additional treatments are needed. Traditional analyses require researchers to pre-specify potential subgroups to reduce the risk of reporting spurious results. There is a need for methods that can detect such subgroups without a priori specification while allowing researchers to control the probability of falsely detecting heterogeneous subgroups when treatment effects are uniform across the study population. Methods We propose a permutation procedure for tuning parameter selection that allows for type I error control when testing for heterogeneous treatment effects framed within the Virtual Twins procedure for subgroup identification. We verify that the type I error rate can be controlled at the nominal rate and investigate the power for detecting heterogeneous effects when present through extensive simulation studies. We apply our method to a secondary analysis of data from a randomized trial of very low nicotine content cigarettes. Results In the absence of type I error control, the observed type I error rate for Virtual Twins was between 99% and 100%. In contrast, models tuned via the proposed permutation were able to control the type I error rate and detect heterogeneous effects when present. An application of our approach to a recently completed trial of very low nicotine content cigarettes identified several variables with potentially heterogeneous treatment effects. Conclusions The proposed permutation procedure allows researchers to engage in secondary analyses of clinical trials for treatment effect heterogeneity while maintaining the type I error rate without pre-specifying subgroups.

Funder

National Cancer Institute

National Center for Advancing Translational Sciences

National Institute on Drug Abuse

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3