Multicenter trials using 18F-fluorodeoxyglucose (FDG) PET to predict chemotherapy response: Effects of differential measurement error and bias on power calculations for unselected and enrichment designs

Author:

Kurland Brenda F12,Doot Robert K3,Linden Hannah M4,Mankoff David A3,Kinahan Paul E5

Affiliation:

1. Fred Hutchinson Cancer Research Center, Seattle, WA, USA

2. Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA

3. Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA

4. Department of Medicine, University of Washington, Seattle, WA, USA

5. Department of Radiology, University of Washington, Seattle, WA, USA

Abstract

Background Clinical validation of a predictive biomarker is especially difficult when the biomarker cannot be assessed retrospectively. A cost-effective, prospective multicenter replication study with rapid accrual is warranted prior to further validation studies such as a marker-based strategy for treatment selection. However, it is often unknown how measurement error and bias in a multicenter trial will differ from that in single-institution studies. Purpose Power calculations using simulated data may inform the efficient design of a multicenter study to replicate single-institution findings. This case study used serial standardized uptake value (SUV) measures from 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to predict early response to breast cancer neoadjuvant chemotherapy. We examined the impact of accelerating accrual through increased inclusion of secondary sites with greater levels of measurement error and bias. We also examined whether enrichment designs based on breast cancer initial uptake could increase the study power for a fixed budget (200 total scans). Methods Reference FDG PET SUV data were selected with replacement from a single-institution trial; pathologic complete response (pCR) data were simulated using a logistic regression model predicting response by mid-therapy percent change in SUV. The impact of increased error for SUV measurements in multicenter trials was simulated by sampling from error and bias distributions: 20%−40% measurement error, 0%−40% bias, and fixed error/bias values. The proportion of patients recruited from secondary sites (with higher additional error/bias compared to primary sites) varied from 25% to 75%. Results Reference power (from source data with no added error) was 0.92 for N = 100 to detect an association between percentage change in SUV and response. With moderate (20%) simulated measurement error for 3/4, 1/2, and 1/4 of measurements and 40% for the remainder, power was 0.70, 0.61, and 0.53, respectively. Reduction of study power was similar for other manifestations of measurement error (bias as a percentage of true value, absolute error, and absolute bias). Enrichment designs, which recruit additional patients by not conducting a second scan in patients with unsuitable pre-therapy uptake (low baseline SUV), did not lead to greater power for studies constrained to the same total cost. Limitations Simulation parameters could be incorrect, or not generalizable. Under a different logistic regression model relating mid-therapy percent change in SUV to pCR (with no relationship for patients with low baseline SUV, rather than the modest point estimate from reference data), the enrichment design did have somewhat greater power than the unselected design. Conclusion Even moderate additional measurement error substantially reduced study power under both unselected and enrichment designs.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3